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Moderately Large Deflections of 

S U M M A R Y  
In this paper a first approximation theory for the moderately large deflections of anisotropic plates is derived. The 
method used is that of asymptotic integration of a non-linear set of elasticity equations. Higher order systems can be 
derived in a systematic manner. For an isotropic material, the derived equations reduce to the von Karman equations. 

1. Introduction 

Much of the recent activity in the theory of plates and shells has concerned itself with a system- 
atic and consistent derivation of two-dimensional plate and shell equations from the three- 
dimensional equations of elasticity. The dimensions are introduced via changes in the inde- 
pendent variables and the stress and displacements are expanded in terms of a small geometric 
parameter. By equating equal powers of the parameter, successive systems of field equations 
of various orders are obtained. Subsequent integration Over the thickness and application of 
the boundary conditions yields the desired plate or shell approximations. With regard to 
static plate theory, this method has been used by Goodier [t] ,  Friedrichs and Dressler [2], 
Reissner [3], Goldenveizer and Kolos [4], Ebcioglu and Habip [5], and Pickett and Johnson 
[6], among others. 

In this paper the method of asymptotic integration is used in order to derive the first ap- 
proximation equations for a homogeneous anisotropic plate which is described by a partially 
non-linear set of elasticity equations. The equations obtained contain six elastic constants and 
are valid for moderately large deflections [7]. For an isotropic material, they reduce to the 
von Karman equations. For small deflections, the equations uncouple into two equations for 
the in-plan e displacements and one for the transverse displacement. 

' 2. Fundamental Equations 

We consider a homogeneous anisotropic plate bounded by a cylindrical surface and by two 
parallel surfaces perpendicular to the generators of the cylindrical boundary surface. The 
distance between the two parallel faces is taken as 2h and is assumed small compared to a 
representative distance L along the cylindrical surface. The plate is referred a Cartesian 
coordinate system xi (i = 1, 2, 3) such that x3 = 0 represents the middle surface of the plate. 
Within the framework of a partially non-linear theory of elasticity, the field equations for 
such a plate are taken as 

Strain-displacement equations 

1 
~3 = ~(u~,3 + u3,~) 

~33 ~- U3,3 

(1) 
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Equilibrium equations 

fie//,# -/'- 0"~3,3 = 0 

0-e3,eq- (0"eflU3,//),e q- 0"33,3 = 0 
(2) 

Constitutive equations 

e u = kuktakl (3) 

Here, a u is the symmetric stress tensor, e u is the symmetric strain tensor, u~ is the displacement 
vector, and kuu is the elasticity tensor. Latin indices range over the values 1, 2, 3 while Greek 
indices range from 1 to 2. Repeated indices imply the use of the summation convention. A 
comma denotes partial differentiation with respect to the indicated coordinate. 

It is sometimes convenient to express relations (3) in the contracted from 

e, = k~00~ (4) 

where r, s = 1, 2, 3, 4, 5 or 6 and the relations between contracted and tensor components are 

001=0-11,  002=----0022, 0"3=0033,  004---0023, 005=0013, 0 0 6 : 0 0 1 2 ,  (5) 

/31=/311, ~2=/322, /33=/333, ~4-----2~23, 85----=2~t3, 8 6 = 2 ~ 1 2 ,  

For  simplicity, the surface x3 = _+ h are assumed to be free from surface traction, 

0 " 1 3 = 0 0 2 3 = 0 0 3 3 = 0 .  (6) 

3. Asymptotic Approximation 

We introduce dimensionless coordinates ~ defined by 

xe = L ~ ,  x3 = h~3. (7) 

We introduce a geometric parameter 2, 

h 
2 = ~ @ 1. (8) 

Dimensionless stresses s u are defined by 

o-e//-- 0-Se#, ae 3 -= ,~0-Se3 , O'33 = jl,20"S33 (9) 

where a is a representative stress level. 
The elasticity constants kuk I will in general not all be of the same order. It is therefore assumed 

that these functions can be written as a finite sum 
N 

kuk , K ~ ,.tn) ~n (10) 
= a, i j k l  ,'~ 

n=O 

t~) - 0 ( 1 )  or vanish identically. where K is a scale factor a n d  k u u -  
Dimensionless displacements v~ are now. defined as 

ue= K00LG, U 3  = K a L 2 - 1 v 3  . (11) 

In terms of these dimensionless variables, the fundamental equations can be rewritten as 
follows : 

N 
2 2 = n,33 033 T ."~34 o 23 T ~35 ~ T "~36 ~ 

n=O 

�9 . +k46s12] V2,3 =- __v3,2_t_a~.An[k(4nl s11+, (n) 
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"~ v 2 /)1,1 = - -  ~ 3,1 -1- Z 2 " [ k ] " I s , l + . . . + k ( ~ ) 6 s , 2 ]  

Y v 2 V2,2 ~--- - -  ~ 3,2 + Z2"[k~2"Isii+.. .+ v(")~ q 

Y 
0 1 , 2 + 0 2 , 1  = ~ /)3,1/)3,2 + "y'.2n[-b(n) ekn.61o11 A_l.(n) ] 

- -  --~ S12 ~ �9 .. T ~ 6 6  

S13,3 ~ - - S i 1 , 1 - - S 1 ~ 2 , 2  

S23,3 ~ - - S 1 2 , 1 - - S 2 2 , 2  

$33,3 ~- - - S 1 3 , 1 - - 8 2 3 , 2  - -  ~'~ [ ( S l l  V3,1-1-S12 U3,2),1 "~ (S12V3,1-1- S22/.)3,2),2] ( 12 )  

where the contracted form (4) has been used and 

= K , .  0 3 )  

Assuming it to be possible, we expand, in view of condition (8), the stresses and displacements 
in terms of a power series in 2 2, 

M 
sij = s s~}"- l)22,, (14) 

m = l  

M 
Vi = 2 v lm--1)22m 

m = l  

where SlT-1)(~k), v}m-1)(~k)do not depend on 2 for m = l ,  2, ..., M - 1  and the remainders 
stM)r 2), Vl M)(~k, 2) are assumed to be such that they tend to a finite limit as 2 approaches ij ~k~ 
zero. 

If we now substitute expansions (14) into equations (12) we obtain sequences of systems of 
equations which are integrable with respect to {3 in a step by step manner and thus represent 
the desired two-dimensional plate approximations. The first system of equations represents 
the simplest thin plate equations. The higher order systems yield the higher order terms in 
expansions (14) and represent thickness effects. In the following, only the first approximation 
will be considered. These equations are 

v3,3 = 0 (15) 

Vl,3 = -v3 , i  (16) 

V2,3 = - - / )3 ,2  (17) 

v 2 (18) vl,, = - ~ 3 ,1+k l lSu  +k12s22+k16s12 

7 v 2 2+k21sl l+k22s22+k26si2 (19) /)2,2 ~--- - -  ~ , 

/)1,2 -t- V2, I = - -  7V3,1/)3,2 + k61Sl 1 ~- k 6 2 s 2 2  + k 6 6 s 1 2  (20) 

Sia,3 = - sli,1 - s12,2 (21) 

s23,3 = - sl2,i - s22,2 (22) 

S33,3 = - -  Sl 3,1 - -  S23,2 - -  ~ [ ( S l l  V3,1 + S12/)3,2),1 "~ (S12 V3,1 "[- S22V3,2) ,2]  �9 (23 )  

With respect to equations (15-23), it is to be noted that only six elastic constants enter into 
the first approximation. The effects of the other moduli are of higher order in 2 and enter into 
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the systems of higher order. It is further to be noted that the asymptotic method used here leads 
to a solution giving all stress coefficients, including those of transverse shear and normal stress. 

The corresponding boundary conditions for (15-23) are 

s13 = s23 = Saa = 0 ({3 = +i) (24) 

4. Thin Plate Equations 

Integration of (15-17) with respect to 43 yields 

1)3 = V3(~l, ~2) 

vl = Vl(~l, ~2)-  v3,1 ~3 

v2 = v: (~ ,  G ) -  v3 ,2~ ,  

where 1/1, V2, 1/3 are the middle surface displacement components of the plate. 
Let us define a matrix [ki] as follows: 

[ k l l  k12 k16~ 

[ k l ]  : [ k21 k22 

Lk~ ]s Is 
and let I-/q be the inverse of I-k,] 

I -/~1 EI~ / ~ ]  
[ E ] - - [ k l ] - l =  E21 E22 

[e3, E~2 E,j 
Equations (18-20) then yield the following expressions for the stresses: 

S12J Lg12 -I- K12~3 

= gl, 1 @ ~ V32,1 

4212 = V1,2 @ V2,1-}- TV3,1V3, 2 

where 

gl 

and 

(25) 

(26) 

(27) 

(28) 

(29) 

K 1 --~ _ g3,11 

K 2 = -- [73,22 (30) 

K12 = - 2V3,12 

As defined by (29) and (30), the ds represent the strains of the middle surface while the K's 
represent the curvatures. 

Integration of (21-23) yields 

S13 = S13(~D ~i)-- [Ell~l,l-t-E1292,1-]-E13t312,1-]-E31F'l,2~-E3292,2@E33g12,2]~3 

- [ E l I K l , l q - E 1 2 K  2 l-}-E12K12,1-]-E31K1,2q-E3212,2+E33K12,23 (31) 
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$23 = $23(~D ~2) -  ~E31EI,1 -~E32/32,1 -}-E33/312,1 -}-E21/31,2 -}-E22/32,2-l-E23/312,2] ~3 

~2 (32) -- [-E31Kl'1 + E32K2'1 +E33K12 ' t  -[-E21Kl'z+E22Kz'z+Ez3K12'2] T 

$33 =" S33(~1, ~2) -  [$13,1 -}-$23,23 ~3 q- [E11/31,11-}-E12/32,11-1-E13/312,11-}-2E31/31,12 

q- 2E32/32,12 q- 2E33/312,12-l- E21/31,22-}- E22'?'2, 22q-E23~312,22] ~ q- 

q- [El  1KI,11 q- E12K2,11 + E13K12,11 -}- 2E31K1,12 + 2E33 K12,12 + 2E32K2,12 + 

+E21KI 22+E22K2 22+E23K12 22] {~ ' ' ' 6 

-T{[(Ellel-}-E1292+E13/312)V3,1 q- (E31/31 '}- E32/32 q-E33912)V3,2],1 + 

-'}- [(E31/r q- E33g12) V3,1 -{- (E21/31 -}-E22/32-+-E23/312) V3,2],2} ~3 - 

- ~2{ [ ( E l l K  1 -}- E12K 2 --}- E13K12 ) V3,1 -~- (E31K 1 -}- E32K 2 -}- E33K12 ) V3,2], 1 q- 

r (33) q- [(E31K 1 q- E32K 2 -'}- E33K12 ) V3,1 q- (E21 g 1 q- E22K 2 -t- E23K12 ) V3,2],2 } 

where $13, $23, $33 are the middle surface stresses. 
Satisfaction of boundary conditions (24) yields 

S13 = {(El 1K1,1 -~ E12K2,1 q- E13K12,1 + E31Ki,  2 ~- E32K2,2 -}- E33K12,2 ) (34) 

823 = �89 31K1,1 -I-- E32K2, 2 -[- E33 g 12,2 ~- E21K1,2 -[- E22K2,2 -}- E23K12,2) (35) 
$33 = -I(E11/31,11 -[- E12/32,11 '1- E13/312,11 + 2E31/31,12 + 2E32/32,12 -I- 2E33/312,12 + 

-JrE21/31'22-l- E22/32"22[-E23/312"22) -}- 2 {[(EllK1-F E12K2 + E13K12] V3,1+ 

-~ (N31gl-~ E32K2-~E33K12)V3,23,1-~- [(E31K1-{-E32K2 q-E33K12)1/3,1 "~ 

+ (Eel K1 + E22K2 + E23/q2)1/3,212} (36) 

and the following equations for the middle surface displacements: 

E l l  V1,11 --[- (E13 -}-E31 ) 171,12 -~ E331/1,22 -}- N13 V2,11 --}- (E12 --~ E33 ) V2,12 q-E32 V2,22 

= --'~ {(Ell V3,1 '~-E13 V3,2)[/73,11 -[- [(E12 -~ E33) V3,2-~ (El3 ~- E31) V3,1] 1/3,12-} 

--~ (E33 V3,1 q-E32 V3,2)V3,22 } (37) 

E31 v1,11 + (E21 + E33) v1,12 + E23 v,,22 + E33 v2,11 + (E23 + E32) v2,12 + E22 v2,22 

= - ~  {(E31 v3,1 +E33 v3,2)v3,11 + [-(E23 + E~2)v3,2 + (E21 +E33)v3,d v3,12 + 

-~ (E23 1/3,1 + E22 V3,2) V3,22} (38) 

Ell  v3,~ 11 ~ + 2(E13 +E3~)v~,11 ~2 + (4E3~ + ~12 + E21) v~,1122 

q- 2(E23 q- E32) V3,1222 q- E22 V3,2222 

= 3~ { [ (El1< + E12/32 + E13/312)v3,1 + (E31< +/332/32 + E~/312)v3,2],1 

-~ [(E31/31 -}- E32/32 -]-E33/312 ) V3,1 -]- (E21/31-1- E22/32--}- E23/312 ) V3,2],2 } . (39) 

Equations (25), (28), (31-39) comprise a complete set of equations for the determination of 
the first approximation stresses and displacements. 

For an isotropic material, matrix [El is given by 

Journal of Engineerin 9 Math., Vol. 3 (1969) 239-244 



244 O. E. Widera 

[E ]  = 

E K  v E K  
0 

i - v 2 1 - -  ] 12 

v E K  E K  
0 

1 - v 2 1 - v 2 

E K  
0 0 

2 ( l + v ~  

In this case, equations (37-39) reduce to the well-known von Ka rman  equations of thin plate 
theory. In the above, v is Poisson's ratio and E is the modulus of elasticity. 

5. Conclusion 

In this paper a first approximation theory for the moderately large deflections of a homogene- 
ous anisotropic plate was derived by use of the method of asymptotic integration of a partially 
non-linear set of elasticity equations. Even though complete anisotropy was allowed for in the 
elasticity equations, the first approximation equations contain only six elastic constants. This 
implies that, to a first approximation,  the plate material has a plane of elastic symmetry parallel 
tO the middle surface. 

Although not considered here, the higher order approximations will introduce the effect of 
transverse shear and normal stress in the deformation of the plate in a systematic and con- 
sistent manner. This was shown in a previous report on shell dynamics [8]. The limiting case 
of small deflections can be obtained by setting the parameter  ~ equal to zero. 

The suppor~ of the Alexander von Humbold t  Stiftung is gratefully acknowledged. 
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